Show simple item record

dc.contributor.authorBriaudeau, Tifanie
dc.contributor.authorGuerrero Limón, Gustavo
dc.contributor.authorZorita Aguirre, Izaskun
dc.contributor.authorMarigómez Allende, Juan Antonio ORCID
dc.contributor.authorIzaguirre Aramayona, Urtzi
dc.date.accessioned2023-12-21T18:14:35Z
dc.date.available2023-12-21T18:14:35Z
dc.date.issued2023
dc.identifier.citationFrontiers in Marine Science 10 : (2023) // Article ID 1182294es_ES
dc.identifier.issn2296-7745
dc.identifier.urihttp://hdl.handle.net/10810/63491
dc.description.abstractIntroduction: Estuarine ecosystems are under high anthropogenic pressure and receive a wide Q7 variety of contaminants, including metals. They can remain trapped in estuarine sediments at high concentrations for long periods but eventually they can be released to the overlying water and become toxic for the resident benthic biota. As a consequence, biomonitoring programs surveying the health status of estuaries and coastal areas count with benthic species for the assessment of health disturbances in these specific ecosystems. The present investigation aims at recognizing toxicopathic effects elicited in estuarine life stages of the benthic fish Solea senegalensis on exposure to waterborne Cd, a model compound for metal contamination. Methods: Biological responses to metal exposure were assessed based on the application of a “biomarker + histopathology” approach. Two-year old sole juveniles were exposed to various concentrations of waterborne Cd for 3 and 7 days (Control; Low Cd: 1 µg/l; Mid Cd: 10 µg/l and High Cd: 1000 µg/l). Liver samples were collected for chemical analysis at day 7. Biological samples were collected at days 3 and 7 for biochemical (brain and liver), histochemical (liver) and histopathological analysis (liver, gills and gonad). Results: Brain acetyl cholinesterase was inhibited after 7 days exposure, indicating neurotoxic effects on exposure to 1000 µg Cd/l. Hepatic catalase and glutathione-Stransferase were induced at day 3 and inhibited at day 7, which suggests a bell-shaped response. A dose-dependent lysosomal membrane destabilization in hepatocytes was recorded at day 7. In parallel, histopathological lesions in gills, liver and gonad were more frequent at day 7 in soles exposed to high Cd concentrations. Discussion: Overall, the “biomarker + histopathology” approach revealed that waterborne Cd causes toxicopathic effects in sole juveniles upon exposure to environmentally relevant concentrations (10 µg Cd/l). The effects were clearly time dependent, and thus it is conceivable that more severe biological effects would be elicited by these low concentrations of Cd at longer exposure periods. Therefore, biomarkers and histopathology in combination provide early-warning indications of altered health status after waterborne Cd exposure in sole juveniles, a prospective sentinel for biological effects assessment of metal contamination in pollution monitoring programs in estuaries and coastal areas.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleToxicopathic effects of waterborne Cd in sole juveniles, a prospective pollution monitoring sentinel for estuarine ecosystemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 Briaudeau, Guerrero-Limón, Zorita, Marigómez and Izagirre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fmars.2023.1182294/fulles_ES
dc.identifier.doi10.3389/fmars.2023.1182294
dc.departamentoesZoología y biología celular animales_ES
dc.departamentoeuZoologia eta animalia zelulen biologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 Briaudeau, Guerrero-Limón, Zorita, Marigómez and Izagirre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2023 Briaudeau, Guerrero-Limón, Zorita, Marigómez and Izagirre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.