Show simple item record

dc.contributor.authorLaraudogoitia Blanc, Ignacio
dc.contributor.authorHamm, Christian
dc.contributor.authorGarcía de Cortazar, Maider
dc.contributor.authorKaiser, Nils
dc.contributor.authorSavysko, Oleksander
dc.contributor.authorGirot Mata, Franck Andrés ORCID
dc.date.accessioned2024-01-22T16:55:50Z
dc.date.available2024-01-22T16:55:50Z
dc.date.issued2023-12-04
dc.identifier.citationMachines 11(12) : (2023) // Article ID 1067es_ES
dc.identifier.issn2075-1702
dc.identifier.urihttp://hdl.handle.net/10810/64208
dc.description.abstractA comparative study is presented, focusing on three different bioinspired design methodologies applied to a large-scale aeronautical tooling use case. The study aims to optimize the structure in terms of the first vibration mode, minimizing mass, and supporting operational loads. The development of lightweight metallic components is of great importance for industries such as aerospace, automotive, and energy harvesting, where weight reduction can lead to significant improvements in performance, efficiency, and sustainability. Bioinspired design offers a promising approach to achieving these goals. The study begins with an introduction to natural selection and various bioinspired concepts. It proceeds with a thorough review of the selected bioinspired design methodologies and tools, which are then applied to the chosen use case. The outcomes for each methodology were explored with respect to the design requirements. Subsequently, the most suitable design was selected according to the success criteria defined and its validation is explained. The manufacturing of this design was carried out using an advanced and novel approach specifically tailored to accommodate the large dimensions and complexity of the structure. Finally, modal testing was performed to validate the entire process, and the results obtained demonstrate the potential effectiveness of bioinspired design methodologies in achieving lightweighting and optimizing vibration modes for large-scale aeronautical tooling.es_ES
dc.description.sponsorshipThe Government of the Basque Country and the Aquitane Euskadi Network in Green Manufacturing and Ecodesign (LTC ÆNIGME) are acknowledged for their support through the project EKOHEGAZ, grant KK-2021/00092. In the same way, the OASIS consortium in the frame of the European Union’s Horizon 2020 research and innovation programme under grant agreement No 814581 is acknowledged for support through the project BioFLY.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/814581es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjectlightweightes_ES
dc.subjectbio-inspiredes_ES
dc.subjectoptimizationes_ES
dc.subjectvibrationses_ES
dc.titleBioinspired Design for Lightweighting and Vibration Behavior Optimization in Large-Scale Aeronautical Tooling: A Comparative Studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-12-22T13:45:34Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2075-1702/11/12/1067es_ES
dc.identifier.doi10.3390/machines11121067
dc.contributor.funderEuropean Commission
dc.departamentoesIngeniería mecánica
dc.departamentoeuIngeniaritza mekanikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).