Show simple item record

dc.contributor.authorZulueta Barbadillo, Asier
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorOlarte, Javier
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorLópez Guede, José Manuel ORCID
dc.contributor.authorEtxeberria, Saioa
dc.date.accessioned2024-01-22T19:02:47Z
dc.date.available2024-01-22T19:02:47Z
dc.date.issued2023-12-18
dc.identifier.citationElectronics 12(24) : (2023) // Article ID 5038es_ES
dc.identifier.issn2079-9292
dc.identifier.urihttp://hdl.handle.net/10810/64223
dc.description.abstractPhysical models are suitable for the development and optimization of materials and cell designs, whereas models based on experimental data and electrical equivalent circuits (EECs) are suitable for the development of operation estimators, both for cells and batteries. This research work develops an innovative unsupervised artificial neural network (ANN) training cost function for identifying equivalent circuit parameters using electrochemical impedance spectroscopy (EIS) to identify and monitor parameter variations associated with different physicochemical processes that can be related to the states or failure modes in batteries. Many techniques and algorithms are used to fit a predefined EEC parameter, many requiring high-human-expertise support work. However, once the appropriate EEC model is selected to model the different physicochemical processes associated with a given battery technology, the challenge is to implement algorithms that can automatically calculate parameter variations in real time to allow the implementation of estimators of capacity, health, safety, and other degradation modes. Based on previous studies using data augmentation techniques, the new ANN deep learning method introduced in this study yields better results than classical training algorithms. The data used in this work are based on an aging and characterization dataset for 80 Ah and 12 V lead–acid batteries.es_ES
dc.description.sponsorshipThe authors were supported by the Mobility Lab Foundation, a governmental organization of the Provincial Council of Araba and the local council of Vitoria-Gasteiz under the project grant of “Control de baterías de flujo”.es_ES
dc.language.isoenges_ES
dc.publisherMDPI
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjectneural networkses_ES
dc.subjectdeep learninges_ES
dc.subjectelectrical equivalent circuites_ES
dc.subjectelectrochemical impedance spectroscopyes_ES
dc.subjectmodel-based estimatorses_ES
dc.subjectlead–acid batterieses_ES
dc.titleElectrochemical Impedance Spectrum Equivalent Circuit Parameter Identification Using a Deep Learning Techniquees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-12-22T13:46:04Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2079-9292/12/24/5038es_ES
dc.identifier.doi10.3390/electronics12245038
dc.departamentoesIngeniería Energética
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoeuEnergia Ingenieritza
dc.departamentoeuSistemen ingeniaritza eta automatika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).