Show simple item record

dc.contributor.authorCortajarena Echeverria, José Antonio ORCID
dc.contributor.authorBarambones Caramazana, Oscar ORCID
dc.contributor.authorAlkorta Egiguren, Patxi ORCID
dc.contributor.authorCortajarena Alcorta, Jon
dc.date.accessioned2024-01-23T15:43:52Z
dc.date.available2024-01-23T15:43:52Z
dc.date.issued2019-04-03
dc.identifier.citationInternational Journal of Electrical Power and Energy Systems 110 : 747-758 (2019)es_ES
dc.identifier.issn0142-0615
dc.identifier.urihttp://hdl.handle.net/10810/64257
dc.description.abstractNowadays, the increase in solar energy installations as a source of energy is growing considerably. The connection to the grid of these installations generally injects all the power obtained from the panel as active power, making zero the reactive power. The same power injection system can be used to achieve a unit power factor if the active filter feature is integrated in it. In this paper, an active power filter (APF) that can control both, the MPP (maximum power point) of a photovoltaic system (PV) and the power factor of a nonlinear load connected to the grid using a three phase DC/AC power inverter with new sliding mode controllers is presented. Perturbation–observation (P&O) is the used MPPT algorithm and three Sliding Mode Controllers (SMC) are used to regulate the DC voltage of the PV and the current d and q components of the active filter using the PQ theory. With a SMC, no exact knowledge of the model parameters is required and it offers good behavior against unmodeled dynamics, insensitivity to parameter variations and good rejection of external disturbances. The space vector pulse wide modulation (SVPWM) of 7 and 5 segments is implemented in order to check the efficiency and grid current ripple. Several experimental tests have been carried in different conditions, concluding that the presented system provides an efficient maximum power tracking and a good power filter characteristic.es_ES
dc.description.sponsorshipThe authors are very grateful to the UPV/EHU by its support through the project PPGA18/04, to the Basque Government by its support through the project ETORTEK KK-2017/00033 and to the Gipuzkoako Foru Aldundia by its support through the project Etorkizuna Eraikiz 2019.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleSliding mode control of an active power filter with photovoltaic maximum power trackinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2019 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0142061518338122es_ES
dc.identifier.doi10.1016/j.ijepes.2019.03.070
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's license is described as © 2019 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)