Show simple item record

dc.contributor.authorGarcía Enríquez, Javier ORCID
dc.contributor.authorHualde Bilbao, Javier
dc.date.accessioned2024-01-26T10:29:11Z
dc.date.available2024-01-26T10:29:11Z
dc.date.issued2019
dc.identifier.citationEconometrics and Statistics 12 : 66-77 (2019)es_ES
dc.identifier.issn2452-3062
dc.identifier.urihttp://hdl.handle.net/10810/64358
dc.description.abstract[EN] Frequency domain semiparametric estimation of memory parameters belongs to the standard toolkit of applied time series researchers. These methods are based on a local approximation of the spectral density, which robustifies the estimation methods against misspecification, but induces a loss with respect to the parametric setting, where the spectral density is known up to a finite number of unknown parameters. In particular, standard semiparametric estimators have convergence rates no better than T^2/5 , whereas the rate T^1/2 is achievable under parametric assumptions. Refinements of the local approximation have been developed by means of bias-reducing techniques, implying that rates arbitrarily close to the parametric one are achievable in the semiparametric setting. Two of these approaches to cover more general settings (including non-stationarity) are extended. A Monte Carlo experiment of finite sample performance is used to assess whether the asymptotic advantages of the bias-reducing methods materialize in better finite sample behavior.es_ES
dc.description.sponsorshipResearch supported by the Spanish Ministry of Science and Innovation grant ECO2015-64330-P and by the Spanish Ministry of Science and Innovation ERDF grant ECO2016-76884-P .es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectmemory parameterses_ES
dc.subjectsemiparametric estimationes_ES
dc.subjectbias-reducing techniqueses_ES
dc.subjectfractionally integrated processeses_ES
dc.titleLocal Whittle estimation of long memory: Standard versus bias-reducing techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V. under CC BY-NC-ND( https://creativecommons.org/licenses/by-nc-nd/4.0/)es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2452306219300280?via%3Dihubes_ES
dc.identifier.doi10.1016/J.ECOSTA.2019.05.00
dc.departamentoesMétodos Cuantitativoses_ES
dc.departamentoeuMetodo Kuantitatiboakes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V.  under CC BY-NC-ND( https://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's license is described as © 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V. under CC BY-NC-ND( https://creativecommons.org/licenses/by-nc-nd/4.0/)