dc.contributor.author | García Enríquez, Javier | |
dc.contributor.author | Hualde Bilbao, Javier | |
dc.date.accessioned | 2024-01-26T10:29:11Z | |
dc.date.available | 2024-01-26T10:29:11Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Econometrics and Statistics 12 : 66-77 (2019) | es_ES |
dc.identifier.issn | 2452-3062 | |
dc.identifier.uri | http://hdl.handle.net/10810/64358 | |
dc.description.abstract | [EN] Frequency domain semiparametric estimation of memory parameters belongs to the standard toolkit of applied time series researchers. These methods are based on a local approximation of the spectral density, which robustifies the estimation methods against misspecification, but induces a loss with respect to the parametric setting, where the spectral density is known up to a finite number of unknown parameters. In particular, standard semiparametric estimators have convergence rates no better than T^2/5 , whereas the rate T^1/2 is achievable under parametric assumptions. Refinements of the local approximation have been developed by means of bias-reducing techniques, implying that rates arbitrarily close to the parametric one are achievable in the semiparametric setting. Two of these approaches to cover more general settings (including non-stationarity) are extended. A Monte Carlo experiment of finite sample performance is used to assess whether the asymptotic advantages of the bias-reducing methods materialize in better finite sample behavior. | es_ES |
dc.description.sponsorship | Research supported by the Spanish Ministry of Science and Innovation grant ECO2015-64330-P and by the Spanish Ministry of Science and Innovation ERDF grant ECO2016-76884-P . | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | memory parameters | es_ES |
dc.subject | semiparametric estimation | es_ES |
dc.subject | bias-reducing techniques | es_ES |
dc.subject | fractionally integrated processes | es_ES |
dc.title | Local Whittle estimation of long memory: Standard versus bias-reducing techniques | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V. under CC BY-NC-ND( https://creativecommons.org/licenses/by-nc-nd/4.0/) | es_ES |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2452306219300280?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/J.ECOSTA.2019.05.00 | |
dc.departamentoes | Métodos Cuantitativos | es_ES |
dc.departamentoeu | Metodo Kuantitatiboak | es_ES |