Mostrar el registro sencillo del ítem

dc.contributor.authorBadiola Aramendi, Eider
dc.contributor.authorFiser, Béla
dc.contributor.authorGómez Bengoa, Enrique
dc.contributor.authorMielgo Vicente, María Antonia ORCID
dc.contributor.authorOlaizola Alvarez, Yurre
dc.contributor.authorUrruzuno Guiu, Iñaki
dc.contributor.authorGarcía, Jesús María
dc.contributor.authorOdriozola, José M.
dc.contributor.authorRazkin, Jesús
dc.contributor.authorOyarbide Garmendia, Juan Miguel ORCID
dc.contributor.authorPalomo Nicolau, Claudio
dc.date.accessioned2024-01-29T17:30:52Z
dc.date.available2024-01-29T17:30:52Z
dc.date.issued2014-11-25
dc.identifier.citationJournal of the American Chemical Society 136(51) : 17869-17881 (2014)es_ES
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/10810/64441
dc.description.abstractCatalytic and asymmetric Michael reactions constitute very powerful tools for the construction of new C–C bonds in synthesis, but most of the reports claiming high selectivity are limited to some specific combinations of nucleophile/electrophile compound types, and only few successful methods deal with the generation of all-carbon quaternary stereocenters. A contribution to solve this gap is presented here based on chiral bifunctional Brønsted base (BB) catalysis and the use of α′-oxy enones as enabling Michael acceptors with ambivalent H-bond acceptor/donor character, a yet unreported design element for bidentate enoate equivalents. It is found that the Michael addition of a range of enolizable carbonyl compounds that have previously demonstrated challenging (i.e., α-substituted 2-oxindoles, cyanoesters, oxazolones, thiazolones, and azlactones) to α′-oxy enones can afford the corresponding tetrasubstituted carbon stereocenters in high diastereo- and enantioselectivity in the presence of standard BB catalysts. Experiments show that the α′-oxy ketone moiety plays a key role in the above realizations, as parallel reactions under identical conditions but using the parent α,β-unsaturated ketones or esters instead proceed sluggish and/or with poor stereoselectivity. A series of trivial chemical manipulations of the ketol moiety in adducts can produce the corresponding carboxy, aldehyde, and ketone compounds under very mild conditions, giving access to a variety of enantioenriched densely functionalized building blocks containing a fully substituted carbon stereocenter. A computational investigation to rationalize the mode of substrate activation and the reaction stereochemistry is also provided, and the proposed models are compared with related systems in the literature.es_ES
dc.description.sponsorshipFinancial support was provided by the University of the Basque Country UPV/EHU (UFI 11/22), Basque Government (Grant No IT-628-13 and Saiotek 2014), and Ministerio de Economía y Competitividad (Grant CTQ2013-47925-C2), Spain. E.B. and I.O. thank Ministerio de Educación y Ciencia, and I.U. thanks Gobierno Vasco for Fellowships. B.F. thanks the European Commission (FP7-3163792012-ITN). We also thank SGIker (UPV/EHU) for providing NMR, HRMS, X-ray, and computational resources.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.titleEnantioselective Construction of Tetrasubstituted Stereogenic Carbons through Brønsted Base Catalyzed Michael Reactions: α´-Hydroxy Enones as Key Enoate Equivalentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2014 American Chemical Societyes_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/ja510603wes_ES
dc.departamentoesQuímica orgánica Ies_ES
dc.departamentoeuKimika organikoa Ies_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem