Show simple item record

dc.contributor.authorRíos, Sebastián
dc.contributor.authorAguilera, Felipe
dc.contributor.authorNúñez González, José David
dc.contributor.authorGraña Romay, Manuel María
dc.date.accessioned2024-02-05T15:55:14Z
dc.date.available2024-02-05T15:55:14Z
dc.date.issued2017-09-20
dc.identifier.citationNeurocomputing 326/327 : 71-81 (2019)es_ES
dc.identifier.issn1872-8286
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/10810/64647
dc.description.abstractInfluencers in a social network are members that have greater effect in the online social network (OSN) than the average member. In the specific social networks known as communities of practice, where the focus is an specific area of knowledge, influencers are key for the healthy working of the OSN. Approaches to influencer detection using graph analysis of the network can be mislead by the activity of users that are not contributing to the OSN purpose, bogus generators of documents with no relevant information. We propose the use of semantic analysis to filter out such kind of interactions, achieving a simplified graph representation that preserves the main features of the OSN, allowing the detection of true influ- encers. Such simplification reduces computational costs and removes bogus influencers. We demonstrate the approach applying fuzzy concept analysis (FCA) and latent Dirichlet analysis (LDA) to compute docu- ment similarity measures that allow to filter out irrelevant interactions. Experimental results on a com- munity of practice are reportedes_ES
dc.description.sponsorshipSupport from the Chilean “Instituto Sistemas Complejos de Ingeniera” (ICM: P-05-004- F, CONICYT: FBO16; www.sistemasdeingenieria.cl and the Business Intelligence Research Center (www.ceine.cl)
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectnetwork analysises_ES
dc.subjectinfluencer identification
dc.titleSemantically enhanced network analysis for influencer identification in online social networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2017 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)es_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.neucom.2017.01.123es_ES
dc.identifier.doi10.1016/j.neucom.2017.01.123
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoeuMatematika aplikatuaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2017 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's license is described as © 2017 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)