Show simple item record

dc.contributor.authorCalvo Correas, Tamara
dc.contributor.authorUgarte Soraluce, Lorena
dc.contributor.authorJutrzenka Trzebiatowska, Patrycja
dc.contributor.authorSanzberro, Rafael
dc.contributor.authorDatta, Janusz
dc.contributor.authorCorcuera Maeso, María Ángeles
dc.contributor.authorEceiza Mendiguren, María Aranzazu
dc.date.accessioned2024-02-07T22:51:57Z
dc.date.available2024-02-07T22:51:57Z
dc.date.issued2017-10
dc.identifier.citationPolymer Degradation and Stability 144 : 411-419 (2017)es_ES
dc.identifier.issn0141-3910
dc.identifier.urihttp://hdl.handle.net/10810/64768
dc.description.abstractThe polyol is a major component in polyurethane formulations and therefore introducing to the formulation recycled polyol (obtained during decomposition process) allows decreasing the usage of pure petrochemical components. In this work, thermoplastic polyurethanes were prepared using various mixtures of a petrochemical macrodiol poly(ethylene-butylene adipate)diol (PEBA) and a recycled glycolysate intermediate, called glycolysate polyol, in a two-step synthesis procedure with 4,4-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD). The glycolysate polyol was obtained during glycolysis process of polyurethane elastomer using ethylene glycol as a decomposing agent. Glycolysate polyol showed a higher hydroxyl value (199 mg KOH g−1) and glass transition temperature (Tg, −50.1 °C) than pure macrodiol (PEBA). The maximum concentration of glycolysate polyol was 25 wt% over the total polyol. Synthesized polyurethanes had similar chemical structure compared to the polyurethane synthesized without glycolysate polyol, confirmed by Fourier transform infrared spectroscopy. On the one hand, higher contents of glycolysate polyol resulted in higher Tg and a slightly lower thermal stability analyzed by thermogravimetric analysis. On the other hand, improved thermomechanical and mechanical properties were obtained in polyurethanes with partial replacement of pure macrodiol.es_ES
dc.description.sponsorshipFinancial support from the Basque Government (IT-776-13) is gratefully acknowledged. We also wish to acknowledge the “Macrobehavior-Mesostructure-Nanotechnology” SGIker unit from the University of the Basque Country, for the technical support. Janusz Datta acknowledged the financial support for scientific stay at University of the Basque Country within the project ‘‘The development of interdisciplinary doctoral studies at the Gdansk University of Technology in modern technologies” at Gdansk University of Technology in the key areas of the Europe 2020 Strategy Project No. POKL.04.01.01-00-368/09.
dc.language.isoenges_ES
dc.publisherElsevier
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectchemical recycling
dc.subjectglycolysis
dc.subjectglycolysate polyol
dc.subjectthermoplastic polyurethanes
dc.titleThermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0141391017302781
dc.identifier.doi10.1016/j.polymdegradstab.2017.09.001
dc.departamentoesIngeniería química y del medio ambiente
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritza
dc.identifier.eissn1873-2321


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/