Show simple item record

dc.contributor.authorArrizabalaga Uriarte, Naiara
dc.contributor.authorLe Treust, Loïc
dc.contributor.authorMas, Albert
dc.contributor.authorRaymond, Nicolas
dc.date.accessioned2024-02-08T07:45:18Z
dc.date.available2024-02-08T07:45:18Z
dc.date.issued2019
dc.identifier.citationJournal de l’École polytechnique - Mathématiques 6 : 329-365 (2019)
dc.identifier.issn2429-7100
dc.identifier.urihttp://hdl.handle.net/10810/64813
dc.description.abstractThe Dirac operator, acting in three dimensions, is considered. Assuming that a large mass m > 0 lies outside a smooth enough and bounded open set Ω ⊂ R3, it is proved that its spectrum approximates the one of the Dirac operator on Ω with the MIT bag boundary condition. The approximation, modulo an error of order o(1/ m), is carried out by introduc- ing tubular coordinates in a neighborhood of ∂Ω and analyzing one dimensional optimization problems in the normal direction.es_ES
dc.language.isoenges_ES
dc.publisherÉcole polytechnique
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectDirac operator
dc.subjectrelativistic particle in a box
dc.subjectMIT bag model
dc.subjectspectral theory
dc.titleThe MIT bag model as an infinite mass limites_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderCC-BY 4.0*
dc.relation.publisherversionhttps://jep.centre-mersenne.org/articles/10.5802/jep.95/
dc.identifier.doi10.5802/jep.95
dc.departamentoesMatemáticases_ES
dc.departamentoeuMatematikaes_ES
dc.identifier.eissn2270-518X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC-BY 4.0
Except where otherwise noted, this item's license is described as CC-BY 4.0