Show simple item record

dc.contributor.authorGoikolea Núñez, Eider
dc.contributor.authorPalomares, Verónica
dc.contributor.authorWang, Shijian
dc.contributor.authorRuiz de Larramendi Villanueva, Idoia
dc.contributor.authorGuo, Xin
dc.contributor.authorWang, Guoxiu
dc.contributor.authorRojo Aparicio, Teófilo ORCID
dc.date.accessioned2024-02-08T07:55:11Z
dc.date.available2024-02-08T07:55:11Z
dc.date.issued2020-10-11
dc.identifier.citationAdvanced Energy Materials 10(44) : (2020) // Article ID 2002055
dc.identifier.issn1614-6832
dc.identifier.urihttp://hdl.handle.net/10810/64853
dc.description.abstractThe last 10 years established the beginning of a post-lithium era in the field of energy storage, with the renaissance of Na-ion batteries (NIBs) as alternative for Li-based systems. The development of this technology has required intense work in materials research in order to produce and optimize anodes, cathodes, and electrolytes for NIBs. The strong and weak points of the main families of compounds for each battery component are analyzed in this progress report. Taking into account the achievements made in materials for NIBs, the industrial scene is analyzed through the existing prototypes and commercial cells and also from an economical viewpoint. In this scenario, where Na-ion technology seems to be ready for a coming second generation, the use of Na can be extended to almost the whole spectrum of electrochemical energy storage systems: the new room temperature Na-S systems, high-energy Na-air technology, or high-power Na-based hybrid supercapacitors. Thus, the degree of development of NIBs, together with the promising performance of newer Na-based energy storage systems, makes Na the key to the coming commercial post-lithium systems.es_ES
dc.description.sponsorshipThis work was supported by the “Ministerio de Economíay Competitividad” of Spain (under projects MAT2016-78266-P and PID2019-107468RB-C21), the “Fondo Europeo de Desarrollo Regional” (FEDER), and the Eusko Jaurlaritza/Gobierno Vasco (under project IT1226-19).es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2016-78266-P
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-107468RB-C21
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectelectrodeses_ES
dc.subjectelectrolytes
dc.subjectindustrial developments
dc.subjectNa-ion batteries
dc.titleNa-Ion Batteries—Approaching Old and New Challengeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2020 Wiley-VCH GmbHes_ES
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202002055
dc.identifier.doi10.1002/aenm.202002055
dc.departamentoesQuímica inorgánicaes_ES
dc.departamentoeuKimika ez-organikoaes_ES
dc.identifier.eissn1614-6840


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record