Show simple item record

dc.contributor.authorAteka Bilbao, Ainara
dc.contributor.authorPortillo Bazaco, Ander
dc.contributor.authorSánchez Contador, Miguel
dc.contributor.authorBilbao Elorriaga, Javier
dc.contributor.authorAguayo Urquijo, Andrés Tomás ORCID
dc.date.accessioned2024-02-08T09:38:25Z
dc.date.available2024-02-08T09:38:25Z
dc.date.issued2021-01-14
dc.identifier.citationRenewable Energy 169 : 1242-1251 (2021)es_ES
dc.identifier.issn0960-1481
dc.identifier.issn1879-0682
dc.identifier.urihttp://hdl.handle.net/10810/65069
dc.description.abstractAn original kinetic model has been used to describe the performance of an original CuO-ZnO-ZrO2@SAPO-11 bifunctional catalyst on the one-stage synthesis of dimethyl ether (DME) from CO/CO2 hydrogenation. The model considers that certain individual reactions (the synthesis of methanol and the reverse water gas shift) occur in the metallic function (core) of the catalyst particle, whereas others (methanol dehydration) take place in the shell (acid function), and that the progress of these reactions is conditioned by the diffusion of the components. The kinetic parameters of the individual reactions and the deactivation kinetics have been calculated from experimental data obtained in a wide conditions range (H2/COx ratio, 2.5-4; CO2/COx ratio, 0-1; 10-50 bar; 250-325 ºC; 1.25-20 g h molC-1). The use of the model for simulating the packed bed reactor has allowed evaluating the influence of the reaction conditions, as well as assessing the effect of the catalysts particle size. The model predicts DME yields of 64 % for syngas (H2+CO) feeds, 38 % for CO2/COx ratio of 0.50 and 17 % for H2/CO2, respectively, at 70 bar and 290 ºC. The maximum conversion of CO2 predicted by the model for the same space time value and temperature surpasses 30% for H2+CO2 feedstocks at 70 bar, greater than the experimental value obtained at 50 bar at the same temperature (~25 %).es_ES
dc.description.sponsorshipThe following have supported the work: PID2019-108448RB-I00 of the Spanish Government, MINECO; Project IT1218-19 of the Basque Government; ERDF funds; and Contract No. 823745 (HORIZON H2020-MSCA RISE-2018) of the European Commission.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/823745
dc.relationinfo:eu-repo/grantAgreement/MINECO/PID2019-108448RB-I00
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectkinetic modeles_ES
dc.subjectDME synthesises_ES
dc.subjectcore-shell catalystes_ES
dc.subjectCO2 conversiones_ES
dc.subjectdeactivationes_ES
dc.titleMacro-kinetic model for CuO-ZnO-ZrO2@SAPO-11 core-shell catalyst in the direct synthesis of DME from CO/CO2es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2021 The Authors. Published by Elsevier Ltd. under CC-BY-NC-ND*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0960148121000690
dc.identifier.doi/10.1016/j.renene.2021.01.062
dc.contributor.funderEuropean Commission
dc.departamentoesIngeniería químicaes_ES
dc.departamentoeuIngeniaritza kimikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Published by Elsevier Ltd. under CC-BY-NC-ND
Except where otherwise noted, this item's license is described as © 2021 The Authors. Published by Elsevier Ltd. under CC-BY-NC-ND