Show simple item record

dc.contributor.authorAlkorta Agirrezabala, Jon
dc.contributor.authorGojenola Galletebeitia, Koldobika ORCID
dc.contributor.authorIruskieta Quintian, Mikel
dc.date.accessioned2024-02-08T11:04:45Z
dc.date.available2024-02-08T11:04:45Z
dc.date.issued2019
dc.identifier.citationWorkshop on Discourse Relation Parsing and Treebanking : 144–152 (2019)
dc.identifier.isbn978-1-948087-98-8
dc.identifier.urihttp://hdl.handle.net/10810/65412
dc.description.abstractDiscourse information is crucial for a better understanding of the text structure and it is also necessary to describe which part of an opinionated text is more relevant or to de- cide how a text span can change the polar- ity (strengthen or weaken) of other span by means of coherence relations. This work presents the first results on the annotation of the Basque Opinion Corpus using Rhetorical Structure Theory (RST). Our evaluation re- sults and analysis show us the main avenues to improve on a future annotation process. We have also extracted the subjectivity of several rhetorical relations and the results show the ef- fect of sentiment words in relations and the in- fluence of each relation in the semantic orien- tation value.
dc.language.isoenges_ES
dc.publisherAssociation for Computational Linguistics
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleTowards discourse annotation and sentiment analysis of the Basque Opinion Corpuses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.rights.holder© 2019 Association for Computational Linguistics under Creative Commons Attribution 4.0 International License.*
dc.relation.publisherversionhttps://aclanthology.org/W19-2718/
dc.departamentoesDidáctica de la Lengua y la Literaturaes_ES
dc.departamentoeuHizkuntzaren eta literaturaren didaktikaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 Association for Computational Linguistics under Creative Commons Attribution 4.0 International License.
Except where otherwise noted, this item's license is described as © 2019 Association for Computational Linguistics under Creative Commons Attribution 4.0 International License.