dc.contributor.author | Uria Albizuri, Jone | |
dc.contributor.author | Gül, Sükran | |
dc.date.accessioned | 2024-02-08T14:58:54Z | |
dc.date.available | 2024-02-08T14:58:54Z | |
dc.date.issued | 2020-06-25 | |
dc.identifier.issn | 1661-7207 | |
dc.identifier.uri | http://hdl.handle.net/10810/65797 | |
dc.description.abstract | If G is a Grigorchuk-Gupta-Sidki group defined over a p-adic tree, where p is an odd prime, we study the existence of Beauville surfaces associated to the quotients of G by its level stabilizers stG(n). We prove that if G is periodic then the quotients G/stG(n) are Beauville groups for every n≥2 if p≥5 and n≥3 if p=3. On the other hand, if G is non-periodic, then none of the quotients G/stG(n) are Beauville groups. | es_ES |
dc.description.sponsorship | Both authors acknowledge financial support from the Spanish Government, grants MTM2014-53810-C2-2-P
and MTM2017-86802-P, partly with FEDER funds, and from the Basque Government, grant IT974-16. This
research is also supported by the Basque Government through the BERC 2018-2021 program and by the Spanish
State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project
RTI2018-093860-B-C21 funded by (AEI/FEDER, UE) and acronym “MathNEURO”. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | EMS Press | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICIU/MTM2014-53810-C2-2-P | |
dc.relation | info:eu-repo/grantAgreement/MICIU/MTM2017-86802-P | |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.title | Grigorchuk-Gupta-Sidki groups as a source for Beauvile surfaces | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2020 EMS Press | * |
dc.relation.publisherversion | https://ems.press/journals/ggd/articles/17000 | |
dc.identifier.doi | 10.4171/GGD/559 | |
dc.departamentoes | Matemáticas | |
dc.departamentoeu | Matematika | |