Show simple item record

dc.contributor.authorUria Albizuri, Jone
dc.contributor.authorGül, Sükran
dc.date.accessioned2024-02-08T14:58:54Z
dc.date.available2024-02-08T14:58:54Z
dc.date.issued2020-06-25
dc.identifier.issn1661-7207
dc.identifier.urihttp://hdl.handle.net/10810/65797
dc.description.abstractIf G is a Grigorchuk-Gupta-Sidki group defined over a p-adic tree, where p is an odd prime, we study the existence of Beauville surfaces associated to the quotients of G by its level stabilizers stG(n). We prove that if G is periodic then the quotients G/stG(n) are Beauville groups for every n≥2 if p≥5 and n≥3 if p=3. On the other hand, if G is non-periodic, then none of the quotients G/stG(n) are Beauville groups.es_ES
dc.description.sponsorshipBoth authors acknowledge financial support from the Spanish Government, grants MTM2014-53810-C2-2-P and MTM2017-86802-P, partly with FEDER funds, and from the Basque Government, grant IT974-16. This research is also supported by the Basque Government through the BERC 2018-2021 program and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project RTI2018-093860-B-C21 funded by (AEI/FEDER, UE) and acronym “MathNEURO”.es_ES
dc.language.isoenges_ES
dc.publisherEMS Presses_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/MTM2014-53810-C2-2-P
dc.relationinfo:eu-repo/grantAgreement/MICIU/MTM2017-86802-P
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.titleGrigorchuk-Gupta-Sidki groups as a source for Beauvile surfaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2020 EMS Press*
dc.relation.publisherversionhttps://ems.press/journals/ggd/articles/17000
dc.identifier.doi10.4171/GGD/559
dc.departamentoesMatemáticas
dc.departamentoeuMatematika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record