Show simple item record

dc.contributor.authorGómez Cortés, José Fernando
dc.contributor.authorNó Sánchez, María Luisa
dc.contributor.authorLópez Ferreño, Iñaki
dc.contributor.authorHernández-Saz, Jesús
dc.contributor.authorMolina, Sergio I.
dc.contributor.authorChuvilin, Andrey
dc.contributor.authorSan Juan Núñez, José María ORCID
dc.date.accessioned2024-02-08T19:52:40Z
dc.date.available2024-02-08T19:52:40Z
dc.date.issued2017-05-29
dc.identifier.citationNature Nanotechnology 12 : 790-796 (2017)es_ES
dc.identifier.issn1748-3395
dc.identifier.issn1748-3387
dc.identifier.urihttp://hdl.handle.net/10810/65830
dc.description.abstractShape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu–Al–Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = −2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO), projects MAT2009-12492, MAT2012-36421 and CONSOLIDER-INGENIO 2010 CSD2009-00013, as well as by the Consolidated Research Group IT-10-310 and the ETORTEK-ACTIMAT project from the Education and Industry Departments of the Basque Government and Junta de Andalucía (INNANOMAT PAI research group TEP-946). J.F.G.-C. thanks MINECO for a PhD grant. This work made use of the FIB facilities of SGIKER from the UPV/EHU and of IMEYMAT-UCA. Co-funding from FEDER-EU and REACT projects from H-2020, grant 640241, are also acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherMacmillan Publishers Limited, part of Springer Nature.es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2009-12492
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2012-3642
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/640241
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectsuperelasticityes_ES
dc.subjectnanoscalees_ES
dc.subjectsize effectes_ES
dc.titleSize-effect and scaling power-law for superelasticity in Shape Memory Alloys at the nano-scalees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2017, Springer Nature Limitedes_ES
dc.relation.publisherversionhttps://www.nature.com/articles/nnano.2017.91es_ES
dc.identifier.doi/10.1038/NNANO.2017.91
dc.contributor.funderEuropean Comission
dc.departamentoesMatemática Aplicada
dc.departamentoeuMatematika Aplikatua


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record