Show simple item record

dc.contributor.authorLanda Medrano, Imanol
dc.contributor.authorUrdampilleta, Idoia
dc.contributor.authorCastrillo, Iker
dc.contributor.authorGrande, Hans-Jürgen
dc.contributor.authorDe Meatza, Iratxe
dc.contributor.authorEguía Barrio, Aitor
dc.date.accessioned2024-04-12T14:50:14Z
dc.date.available2024-04-12T14:50:14Z
dc.date.issued2024-03-28
dc.identifier.citationEnergies 17(7) : (2024) // Article ID 1616es_ES
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10810/66638
dc.description.abstractTransitioning to more ambitious electrode formulations facilitates developing high-energy density cells, potentially fulfilling the demands of electric car manufacturers. In this context, the partial replacement of the prevailing anode active material in lithium-ion cells, graphite, with silicon-based materials enhances its capacity. Nevertheless, this requires adapting the rest of the components and harmonizing the electrode integration in the cell to enhance the performance of the resulting high-capacity anodes. Herein, starting from a replacement in the standard graphite anode recipe with 22% silicon suboxide at laboratory scale, the weight fraction of the electrochemically inactive materials was optimized to 2% carbon black/1% dispersant/3% binder combination before deriving an advantage from including single-wall carbon nanotubes in the formulation. In the second part, the recipe was upscaled to a semi-industrial electrode coating and cell assembly line. Then, 1 Ah lithium-ion pouch cells were filled and tested with different commercial electrolytes, aiming at studying the dependency of the Si-based electrodes on the additives included in the composition. Among all the electrolytes employed, the EL2 excelled in terms of capacity retention, obtaining a 48% increase in the number of cycles compared to the baseline electrolyte formulation above the threshold capacity retention value (80% state of health).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjectlithium-ion cellses_ES
dc.subjectelectrode optimizationes_ES
dc.subjectsilicon-based materialses_ES
dc.subjectpouch cellses_ES
dc.titleMaking Room for Silicon: Including SiOx in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2024-04-12T13:14:42Z
dc.rights.holder© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/17/7/1616es_ES
dc.identifier.doi10.3390/en17071616
dc.departamentoesQuímica aplicada
dc.departamentoesQuímica Orgánica e Inorgánica
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnología
dc.departamentoeuKimika aplikatua
dc.departamentoeuKimika Organikoa eta Ez-Organikoa
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).