Show simple item record

dc.contributor.authorHartmann, Sebastian
dc.contributor.authorMurua de la Mata, Oihane ORCID
dc.contributor.authorArrizubieta Arrate, Jon Iñaki ORCID
dc.contributor.authorLamikiz Mentxaka, Aitzol ORCID
dc.contributor.authorMayr, Peter
dc.date.accessioned2024-04-16T16:25:56Z
dc.date.available2024-04-16T16:25:56Z
dc.date.issued2024-04
dc.identifier.citationSimulation Modelling Practice and Theory 132 : (2024) // Article ID 102881es_ES
dc.identifier.issn1569-190X
dc.identifier.issn1878-1462
dc.identifier.urihttp://hdl.handle.net/10810/66716
dc.description.abstractThe ramp-up of new geometries, process parameters, and materials can be enormously time and cost-intensive in Additive Manufacturing. Especially for Laser-Directed Energy Deposition (DED-L), the extreme physical environment at the melt pool results in the need for multiple trial-and-error tests to quantify the process behavior. These tests significantly raise manufacturing expenses. A Digital Twin (DT) of the DED-L process can therefore be of substantial value if the amount of experimental testing is hereby reduced. In the present study, a multiscale DT based on coupling a global and local model has been investigated. The global model simulates the heating of the entire part, whereas the local model represents only a specific region of this global geometry. Using a high-density mesh for the local model enables the simulation of the specific laser-powder interactions and fast-cooling rates typical in DED-L. The results of the global model are used to integrate context awareness about the changing process conditions during the print job into the local model. This process evolvement is impossible to obtain with models of smaller dimensions and is of elemental necessity for accurately simulating multi-clad depositions. The DT was validated on an industrial-grade DED-L machine with in-situ process monitoring capabilities. In all cases, the DT shows a high resemblance with the experimental data and metallographic inspections at a reasonable computational cost.es_ES
dc.description.sponsorshipGrant TED2021-130543B-I00 funded by the MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/TED2021-130543B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectdigital twines_ES
dc.subjectadditive manufacturinges_ES
dc.subjectphysics-based simulationes_ES
dc.subjectprocess monitoringes_ES
dc.subjectdirected energy depositiones_ES
dc.subjectlaser metal depositiones_ES
dc.titleDigital Twin of the laser-DED process based on a multiscale approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1569190X23001582es_ES
dc.identifier.doi10.1016/j.simpat.2023.102881
dc.departamentoesIngeniería mecánicaes_ES
dc.departamentoeuIngeniaritza mekanikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).