Show simple item record

dc.contributor.authorOlmedo Martínez, Jorge L.
dc.contributor.authorDel Olmo Martínez, Rafael ORCID
dc.contributor.authorGallastegui, Antonela
dc.contributor.authorVillaluenga Arranz, Irune
dc.contributor.authorForsyth, Maria
dc.contributor.authorMüller Sánchez, Alejandro Jesús ORCID
dc.contributor.authorMecerreyes Molero, David
dc.date.accessioned2024-04-18T15:23:00Z
dc.date.available2024-04-18T15:23:00Z
dc.date.issued2024-01
dc.identifier.citationACS Polymers Au 4(1) : 77-85 (2024)es_ES
dc.identifier.issn2694-2453
dc.identifier.urihttp://hdl.handle.net/10810/66779
dc.description.abstractSolid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20–30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10–5 S cm–1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg–1 with a current density of 0.05 mA cm–2 was achieved.es_ES
dc.description.sponsorshipFinancial support of the Spanish Agencia Estatal de Investigación of the MINECO through project PID2020-119026GB-I00 and the Basque Government, Department of Educatiom through PIBA_2021_1_0025 is acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-119026GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectlithium batteryes_ES
dc.subjectsolid polymer electrolytees_ES
dc.subjectnanocomposite polymer electrolytees_ES
dc.subjectLi-polymer nanoparticleses_ES
dc.subjectPEO blendses_ES
dc.titleAll-Polymer Nanocomposite as Salt-Free Solid Electrolyte for Lithium Metal Batterieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY-NC-ND 4.0.es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acspolymersau.3c00035es_ES
dc.identifier.doi10.1021/acspolymersau.3c00035
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. Published by American Chemical Society. This publication is licensed under
CC-BY-NC-ND 4.0.
Except where otherwise noted, this item's license is described as © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY-NC-ND 4.0.