dc.contributor.author | Olmedo Martínez, Jorge L. | |
dc.contributor.author | Del Olmo Martínez, Rafael | |
dc.contributor.author | Gallastegui, Antonela | |
dc.contributor.author | Villaluenga Arranz, Irune | |
dc.contributor.author | Forsyth, Maria | |
dc.contributor.author | Müller Sánchez, Alejandro Jesús | |
dc.contributor.author | Mecerreyes Molero, David | |
dc.date.accessioned | 2024-04-18T15:23:00Z | |
dc.date.available | 2024-04-18T15:23:00Z | |
dc.date.issued | 2024-01 | |
dc.identifier.citation | ACS Polymers Au 4(1) : 77-85 (2024) | es_ES |
dc.identifier.issn | 2694-2453 | |
dc.identifier.uri | http://hdl.handle.net/10810/66779 | |
dc.description.abstract | Solid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20–30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10–5 S cm–1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg–1 with a current density of 0.05 mA cm–2 was achieved. | es_ES |
dc.description.sponsorship | Financial support of the Spanish Agencia Estatal de Investigación of the MINECO through project PID2020-119026GB-I00 and the Basque Government, Department of Educatiom through PIBA_2021_1_0025 is acknowledged. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | ACS | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/PID2020-119026GB-I00 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | lithium battery | es_ES |
dc.subject | solid polymer electrolyte | es_ES |
dc.subject | nanocomposite polymer electrolyte | es_ES |
dc.subject | Li-polymer nanoparticles | es_ES |
dc.subject | PEO blends | es_ES |
dc.title | All-Polymer Nanocomposite as Salt-Free Solid Electrolyte for Lithium Metal Batteries | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2024 The Authors. Published by American Chemical Society. This publication is licensed under
CC-BY-NC-ND 4.0. | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://pubs.acs.org/doi/10.1021/acspolymersau.3c00035 | es_ES |
dc.identifier.doi | 10.1021/acspolymersau.3c00035 | |
dc.departamentoes | Polímeros y Materiales Avanzados: Física, Química y Tecnología | es_ES |
dc.departamentoeu | Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia | es_ES |