Show simple item record

dc.contributor.authorCastro Reigía, David
dc.contributor.authorEzenarro Garate, Jokin
dc.contributor.authorAzkune Ulla, Mikel ORCID
dc.contributor.authorAyesta Ereño, Igor ORCID
dc.contributor.authorOstra Beldarrain, Miren ORCID
dc.contributor.authorAmigo Rubio, José Manuel ORCID
dc.contributor.authorGarcía Esteban-Barcina, Iker
dc.contributor.authorOrtiz Fernández, María de la Cruz
dc.date.accessioned2024-04-23T17:19:41Z
dc.date.available2024-04-23T17:19:41Z
dc.date.issued2024-04
dc.identifier.citationJournal of Food Composition and Analysis 128 : (2024) // Article ID 106015es_ES
dc.identifier.issn0889-1575
dc.identifier.issn1096-0481
dc.identifier.urihttp://hdl.handle.net/10810/66878
dc.description.abstractA system based on near-infrared (NIR) spectroscopy has been developed for the in-line control of the composition of the milk used as raw material for yoghurt production to control the content of protein and fat in the final product, and, therefore, to reduce variability in the production process. Firstly, after selecting the appropriate method for preprocessing NIR data, Partial Least Squares Regression models were built to predict fat and protein content in milk, obtaining good performances. The variance explained of y-block in prediction (R2P) was 0.99 and 0.80, while the Root Mean Square Error of Prediction (RMSEP), was 0.26 and 0.16 for fat and protein, respectively. With those models, it was possible to determine the fat and protein contents in milk in real time, and therefore, the quantity of milk powder and cream added in the manufacturing process of yoghurt could be readjusted. The presented strategy allows the improvement of the homogeneity of the final product, reducing the variability of the nutritional values in more than 70% with respect to the traditional recipe, and also meet the target values according to yoghurt producers for fat and protein content, that is, 10% of fat and 5% of protein.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectpartial least squares regression (PLSR)es_ES
dc.subjectnear-infrared (NIR)es_ES
dc.subjectin-linees_ES
dc.subjectproof of conceptes_ES
dc.subjectyoghurtes_ES
dc.subjectfates_ES
dc.subjectproteines_ES
dc.titleYoghurt standardization using real-time NIR prediction of milk fat and protein contentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0889157524000498es_ES
dc.identifier.doi10.1016/j.jfca.2024.106015
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoesQuímica analíticaes_ES
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoesTecnología electrónicaes_ES
dc.departamentoeuKimika analitikoaes_ES
dc.departamentoeuKimika aplikatuaes_ES
dc.departamentoeuMatematika aplikatuaes_ES
dc.departamentoeuTeknologia elektronikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/)
Except where otherwise noted, this item's license is described as © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/)