dc.contributor.author | Castro Reigía, David | |
dc.contributor.author | Ezenarro Garate, Jokin | |
dc.contributor.author | Azkune Ulla, Mikel | |
dc.contributor.author | Ayesta Ereño, Igor | |
dc.contributor.author | Ostra Beldarrain, Miren | |
dc.contributor.author | Amigo Rubio, José Manuel | |
dc.contributor.author | García Esteban-Barcina, Iker | |
dc.contributor.author | Ortiz Fernández, María de la Cruz | |
dc.date.accessioned | 2024-04-23T17:19:41Z | |
dc.date.available | 2024-04-23T17:19:41Z | |
dc.date.issued | 2024-04 | |
dc.identifier.citation | Journal of Food Composition and Analysis 128 : (2024) // Article ID 106015 | es_ES |
dc.identifier.issn | 0889-1575 | |
dc.identifier.issn | 1096-0481 | |
dc.identifier.uri | http://hdl.handle.net/10810/66878 | |
dc.description.abstract | A system based on near-infrared (NIR) spectroscopy has been developed for the in-line control of the composition of the milk used as raw material for yoghurt production to control the content of protein and fat in the final product, and, therefore, to reduce variability in the production process. Firstly, after selecting the appropriate method for preprocessing NIR data, Partial Least Squares Regression models were built to predict fat and protein content in milk, obtaining good performances. The variance explained of y-block in prediction (R2P) was 0.99 and 0.80, while the Root Mean Square Error of Prediction (RMSEP), was 0.26 and 0.16 for fat and protein, respectively. With those models, it was possible to determine the fat and protein contents in milk in real time, and therefore, the quantity of milk powder and cream added in the manufacturing process of yoghurt could be readjusted. The presented strategy allows the improvement of the homogeneity of the final product, reducing the variability of the nutritional values in more than 70% with respect to the traditional recipe, and also meet the target values according to yoghurt producers for fat and protein content, that is, 10% of fat and 5% of protein. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | partial least squares regression (PLSR) | es_ES |
dc.subject | near-infrared (NIR) | es_ES |
dc.subject | in-line | es_ES |
dc.subject | proof of concept | es_ES |
dc.subject | yoghurt | es_ES |
dc.subject | fat | es_ES |
dc.subject | protein | es_ES |
dc.title | Yoghurt standardization using real-time NIR prediction of milk fat and protein content | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/) | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0889157524000498 | es_ES |
dc.identifier.doi | 10.1016/j.jfca.2024.106015 | |
dc.departamentoes | Matemática aplicada | es_ES |
dc.departamentoes | Química analítica | es_ES |
dc.departamentoes | Química aplicada | es_ES |
dc.departamentoes | Tecnología electrónica | es_ES |
dc.departamentoeu | Kimika analitikoa | es_ES |
dc.departamentoeu | Kimika aplikatua | es_ES |
dc.departamentoeu | Matematika aplikatua | es_ES |
dc.departamentoeu | Teknologia elektronikoa | es_ES |