Show simple item record

dc.contributor.authorPérez Miguel, Naiara
dc.contributor.authorCuadros Oller, Montserrat
dc.contributor.authorRigau Claramunt, Germán ORCID
dc.date.accessioned2024-05-02T18:01:17Z
dc.date.available2024-05-02T18:01:17Z
dc.date.issued2023-11
dc.identifier.citationArtificial Intelligence in Medicine 145 : (2023) // Article ID 102682es_ES
dc.identifier.issn1873-2860
dc.identifier.issn0933-3657
dc.identifier.urihttp://hdl.handle.net/10810/67317
dc.description.abstractNatural Language Processing (NLP) based on new deep learning technology is contributing to the emergence of powerful solutions that help healthcare providers and researchers discover valuable patterns within insurmountable volumes of health records and scientific literature. Fundamental to the success of such solutions is the processing of negation and speculation. The article addresses this problem with state-of-the-art deep learning approaches from two perspectives: cue and scope labelling, and assertion classification. In light of the real struggle to access clinical annotated data, the study (a) proposes a methodology to automatically convert cue-scope annotations to assertion annotations; and (b) includes a range of scenarios with varying amounts of training data and adversarial test examples. The results expose the clear advantage of Transformer-based models in this regard, managing to overpass a series of baselines and the related work in the public corpus NUBes of clinical Spanish text.es_ES
dc.description.sponsorshipThis work is partly supported by the projects DeepText (KK-2020-00088, SPRI, Basque Government, Spain) and DeepReading (RTI2018-096846-B-C21, MCIU/AEI/FEDER, UE ).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-096846-B-C21es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectdeep learninges_ES
dc.subjectnatural language processinges_ES
dc.subjectbiomedical language processinges_ES
dc.subjectnegationes_ES
dc.subjectspeculationes_ES
dc.titleNegation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical textes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by- nc/4.0/).es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0933365723001963es_ES
dc.identifier.doi10.1016/j.artmed.2023.102682
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by- nc/4.0/).