Show simple item record

dc.contributor.authorAguirresarobe, Robert
dc.contributor.authorCalafel Martínez, Miren Itxaso ORCID
dc.contributor.authorVillanueva Díez, Sara
dc.contributor.authorSánchez, Alberto
dc.contributor.authorAgirre, Amaia
dc.contributor.authorSukia, Itxaro
dc.contributor.authorEsnaola, Aritz
dc.contributor.authorSaralegui Otamendi, Ainara
dc.date.accessioned2024-05-08T16:09:23Z
dc.date.available2024-05-08T16:09:23Z
dc.date.issued2024-04-10
dc.identifier.citationPolymers 16(8) : (2024) // Article ID 1030es_ES
dc.identifier.issn2073-4360
dc.identifier.urihttp://hdl.handle.net/10810/67767
dc.description.abstractPolymeric materials, renowned for their lightweight attributes and design adaptability, play a pivotal role in augmenting fuel efficiency and cost-effectiveness in railway vehicle development. The tailored formulation of compounds, specifically designed for additive manufacturing, holds significant promise in expanding the use of these materials. This study centers on poly(lactic acid) (PLA), a natural-based biodegradable polymeric material incorporating diverse halogen-free flame retardants (FRs). Our investigation scrutinizes the printability and fire performance of these formulations, aligning with the European railway standard EN 45545-2. The findings underscore that FR in the condensed phase, including ammonium polyphosphate (APP), expandable graphite (EG), and intumescent systems, exhibit superior fire performance. Notably, FR-inducing hydrolytic degradation, such as aluminum hydroxide (ATH) or EG, reduces polymer molecular weight, significantly impacting PLA’s mechanical performance. Achieving a delicate balance between fire resistance and mechanical properties, formulations with APP as the flame retardant emerge as optimal. This research contributes to understanding the fire performance and printability of 3D-printed PLA compounds, offering vital insights for the rail industry’s adoption of polymeric materials.es_ES
dc.description.sponsorshipFinancial support was provided by the Basque Country Government through the ELKARTEK 2021 programme (Project MATFUN KK-2021/00066) and Plan Complementario Ma-teriales Avanzados en el marco del componente 17 del Plan de Recuperación, Transformación y Resiliencia financiado por la Unión Europea—NextGeneration EU (EXP. 2022/01367) (A/20220545), which are gratefully acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjectpoly(lactic acid)es_ES
dc.subjectflame retardantses_ES
dc.subjectadditive manufacturinges_ES
dc.subjectrailway standardes_ES
dc.subjectmechanical propertieses_ES
dc.subjectprocessabilityes_ES
dc.titleDevelopment of Flame-Retardant Polylactic Acid Formulations for Additive Manufacturinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2024-04-27T14:02:06Z
dc.rights.holder© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-4360/16/8/1030es_ES
dc.identifier.doi10.3390/polym16081030
dc.departamentoesIngeniería química y del medio ambiente
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritza


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).