Show simple item record

dc.contributor.authorHuang, Jiale
dc.contributor.authorMéndez Aretxabaleta, Xabier
dc.contributor.authorYan, Yu
dc.contributor.authorHu, Zhangli
dc.contributor.authorManzano Moro, Hegoi ORCID
dc.contributor.authorLiu, Jiaping
dc.date.accessioned2024-05-16T17:29:33Z
dc.date.available2024-05-16T17:29:33Z
dc.date.issued2024-04
dc.identifier.citationThe Journal of Physical Chemistry C 128(16) : 6800-6812 (2024)es_ES
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/10810/68006
dc.description.abstractOrganic–inorganic composites play a crucial role in modulating concrete properties, encompassing interfacial interactions and their synergistic mechanisms. Unraveling these interactions presents a formidable challenge. In this study, molecular dynamics simulations were employed to probe the intricate structure, competition, and equilibrium state of interfacial connections involving a temperature rise inhibitor (TRI), C3S, and water. Computational results reveal that the interplay of different bonding networks significantly influences the equilibrium state of the C3S–TRI interfacial interactions, marked by dynamic adsorption–desorption equilibria. The interaction between C3S and TRI manifests in intricate calcium–oxygen and hydrogen bonding networks, which are both easily disturbed by water molecules. Oxygen sites in water serve as binding sites for calcium atoms in C3S and hydrogen atoms in TRI, thereby attenuating the C3S–TRI bonding. Simultaneously, hydrogen sites in water engage with oxygen sites in the TRI, diminishing calcium–oxygen bonding and prompting the detachment of TRI from the C3S surface. Moreover, these hydrogen sites interact with the oxygen sites on the C3S surface, inducing lattice structure alterations and removal of calcium atoms from C3S. As TRI detaches into the liquid phase, it forms complexes with calcium ions, reducing the migration rate of calcium ions within the liquid phase. This study represents the inaugural comprehensive evaluation of the interfacial interaction mechanism between TRI, C3S, and water, offering fundamental insights into the impact of TRI on the evolution of the C3S phase. These findings contribute to a deeper understanding of the complex interplay governing concrete properties, paving the way for enhanced control and optimization in concrete technology.es_ES
dc.description.sponsorshipAuthors appreciate the financial support from the Major Program of National Natural Science Foundation of China (grant no. 52293433), the China Scholarship Council (grant no. 202106090091), the “Departamento de Educación, Política Ling’́uística y Cultura del Gobierno Vasco” (grant no. IT1458-22), and the Transnational Common Laboratory “Aquitaine-Euskadi Network in Green Concrete and Cement-based Materials” (LTC-Green Concrete). We are also grateful to the High-Performance Computer Center (HPCC) of Nanjing University and Beijing PARATERA Tech CO., Ltd. for providing HPC resources that have contributed to the research results reported within this paper. During the preparation of this work, J.H. used OPENAI in order to language polishing. After using this tool/service, J.H. reviewed and edited the content as needed and took full responsibility for the content of the publication.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleElucidating the synergistic effects of temperature rise inhibitor at the water tricalcium silicate interfacees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c07380es_ES
dc.identifier.doi10.1021/acs.jpcc.3c07380
dc.departamentoesFísicaes_ES
dc.departamentoesFísica aplicada Ies_ES
dc.departamentoeuFisikaes_ES
dc.departamentoeuFisika aplikatua Ies_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. Published by American Chemical Society. This publication is licensed under
CC-BY 4.0.
Except where otherwise noted, this item's license is described as © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.