Show simple item record

dc.contributor.authorMartínez Goñi, Xabier Simon
dc.contributor.authorMiranda González de Apodaca, Jon ORCID
dc.contributor.authorPérez López, Usue ORCID
dc.date.accessioned2024-06-25T14:28:49Z
dc.date.available2024-06-25T14:28:49Z
dc.date.issued2024-06
dc.identifier.citationEnvironmental and Experimental Botany 222 : (2024) // Article ID 105756es_ES
dc.identifier.issn0098-8472
dc.identifier.issn1873-7307
dc.identifier.urihttp://hdl.handle.net/10810/68662
dc.description.abstractThe rising atmospheric [CO2] levels will increase global temperature and drought events, threatening wheat (Triticum aestivum) production. In recent years, buckwheat (Fagopyrum esculentum) has emerged as an alternative crop to wheat under extreme drought. However, it is essential to understand the ability of these species to withstand future climatic conditions where drought and high temperature will occur simultaneously in a high [CO2] environment. Since the mitigating effect of high [CO2] is strongly influenced by the severity of the stress, we compared the response of wheat and buckwheat, differently sensitive to drought, to future climatic scenarios. In wheat, high temperature and high [CO2] passively decreased water potential, as shown by the higher dehydration. Likewise, future drought extremely increased water requirements, causing extreme reductions in the photosynthetic rate and in the quantum yield of PSII, as well as changes in the antioxidant metabolism. Conversely, buckwheat maintained optimal hydration levels, promoted higher photosynthetic rates and increased water-use efficiency under the combination of high [CO2] and high temperature, with and without drought. The improved response of buckwheat was attributed to an enhanced stomatal regulation and water-use efficiency, and resulted in an outperforming growth under future climatic conditions compared to the growth in wheat. Our research highlights the promising potential of buckwheat as an alternative crop to wheat under future climatic scenarios.es_ES
dc.description.sponsorshipThis research was financially supported by the Basque Government (grants GRUPO IT1682–22 and 00037-IDA2021–45). X. S. Martínez-Goñi is the recipient of a grant from the Department of Universities and Research of the Basque Government.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectbuckwheates_ES
dc.subjectdroughtes_ES
dc.subjecthigh [CO2]es_ES
dc.subjecthigh temperaturees_ES
dc.subjectphotosynthesises_ES
dc.subjectstomatal conductancees_ES
dc.subjectwheates_ES
dc.titleEnhanced photosynthesis, transpiration regulation, water use-efficiency and growth in buckwheat outperforms wheat response to high [CO2], high temperature and droughtes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S009884722400114Xes_ES
dc.identifier.doi10.1016/j.envexpbot.2024.105756
dc.departamentoesBiología vegetal y ecologíaes_ES
dc.departamentoeuLandaren biologia eta ekologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).