Show simple item record

dc.contributor.authorPereira Falcón, Juan Carlos
dc.contributor.authorIrastorza Sukia, Uxue
dc.contributor.authorSolana, Ane
dc.contributor.authorSoriano, Carlos
dc.contributor.authorGarcía, David
dc.contributor.authorRuiz Salas, José Exequiel
dc.contributor.authorLamikiz Mentxaka, Aitzol ORCID
dc.date.accessioned2024-09-27T16:46:00Z
dc.date.available2024-09-27T16:46:00Z
dc.date.issued2024-09-10
dc.identifier.citationMetals 14(9) : (2024) // Article ID 1031es_ES
dc.identifier.issn2075-4701
dc.identifier.urihttp://hdl.handle.net/10810/69590
dc.description.abstractIn this work, the influence of powder reuse up to three times on directed energy deposition (DED) with laser processing has been studied. The work was carried out on two different gas atomized powders: a cobalt-based alloy type Stellite® 21, and a super duplex stainless steel type UNS S32750. One of the main findings is the influence of oxygen content of the reused powder particles on the final quality and densification of the deposited material and the powder catch efficiency of the laser deposition process. There is a direct relationship between a higher surface oxidation of the particles and the presence of oxygen content in the particles and in the as-built materials, as well as oxides, balance of phases (in the case of the super duplex alloy), pores and defects at the micro level in the laser-deposited material, as well as a decrease in the amount of material that actually melts, reducing powder catch efficiency (more than 12% in the worst case scenario) and the initial bead geometry (height and width) that was obtained for the same process parameters when the virgin powder was used (without oxidation and with original morphology of the powder particles). This causes some melting faults, oxides and formation of undesired oxide compounds in the microstructure, and un-balance of phases particularly in the super duplex stainless steel material, reducing the amount of ferrite from 50.1% to 37.4%, affecting in turn material soundness and its mechanical properties, particularly the hardness. However, the Stellite® 21 alloy type can be reused up to three times, while the super duplex can be reused only once without any major influence of the particles’ surface oxidation on the deposited material quality and hardness.es_ES
dc.description.sponsorshipThis research work was supported by the Basque Government (Eusko Jaurlaritza, Department of Economic Development and Infrastructure, Programme ELKARTEK) through EDISON project (grant KK-2022/00070) and through ECOFAST project (grant KK-2024/00018).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjectpowder reusees_ES
dc.subjectadditive manufacturinges_ES
dc.subjectdirected energy depositiones_ES
dc.subjectlaser metal depositiones_ES
dc.subjectStellite® 21 alloyes_ES
dc.subjectsuper duplex stainless steeles_ES
dc.titleEffect of Powder Reuse on Powder Characteristics and Properties of DED Laser Beam Metal Additive Manufacturing Process with Stellite® 21 and UNS S32750es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2024-09-27T13:19:23Z
dc.rights.holder© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2075-4701/14/9/1031es_ES
dc.identifier.doi10.3390/met14091031
dc.departamentoesIngeniería mecánica
dc.departamentoeuIngeniaritza mekanikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).