Show simple item record

dc.contributor.authorJebari Benslaiman, Shifa
dc.contributor.authorBelloso Uribe, Kepa
dc.contributor.authorBenito Vicente, Asier
dc.contributor.authorGalicia García, Unai
dc.contributor.authorLarrea Sebal, Asier
dc.contributor.authorSantín Gómez, Izortze
dc.contributor.authorAlloza Moral, Iraide
dc.contributor.authorVandenbroeck, Koen
dc.contributor.authorOstolaza Echabe, Elena
dc.contributor.authorMartín Plágaro, César Augusto
dc.date.accessioned2024-10-29T15:13:53Z
dc.date.available2024-10-29T15:13:53Z
dc.date.issued2022-02-13
dc.identifier.citationSmall 18(13) : (2022) // Article ID 2105915es_ES
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/10810/70215
dc.description.abstractCardiovascular disease, the leading cause of mortality worldwide, is primarily caused by atherosclerosis, which is characterized by lipid and inflammatory cell accumulation in blood vessels and carotid intima thickening. Although disease management has improved significantly, new therapeutic strategies focused on accelerating atherosclerosis regression must be developed. Atherosclerosis models mimicking in vivo‐like conditions provide essential information for research and new advances toward clinical application. New nanotechnology‐based therapeutic opportunities have emerged with apoA‐I nanoparticles (recombinant/reconstituted high‐density lipoproteins, rHDL) as ideal carriers to deliver molecules and the discovery that microRNAs participate in atherosclerosis establishment and progression. Here, a therapeutic strategy to improve cholesterol efflux is developed based on a two‐step administrationes_ES
dc.description.sponsorshipThis work was supported by Ministerio De Ciencia e Innovación; Proyectos De Generación De Conocimiento 2021 (Ref: PID2021-127056OB-I00). U.G.-G. was supported by Fundación Biofísica Bizkaia. A.B.-V. was supported by Programa de especialización de Personal Investigador Doctor en la UPV/EHU (2019) 2019–2020. S.J.-B. and A.L.-S. were supported by a grant Programa Investigador en Formación (2017–2018) and (2019–2020), Gobierno Vasco, respectively. A.L.-S. was partially supported by Fundación Biofísica Bizkaia.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleBoosting Cholesterol Efflux from Foam Cells by Sequential Administration of rHDL to Deliver MicroRNA and to Remove Cholesterol in a Triple‐Cell 2D Atherosclerosis Modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Small published by Wiley-VCH GmbH.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,es_ES
dc.relation.publisherversionhttps://doi.org/10.1002/smll.202105915es_ES
dc.identifier.doi10.1002/smll.202105915
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Small published by Wiley-VCH GmbH.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
Except where otherwise noted, this item's license is described as © 2022 The Authors. Small published by Wiley-VCH GmbH.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,