Show simple item record

dc.contributor.authorMoles, Luis
dc.contributor.authorLlavori, Iñigo
dc.contributor.authorEchegaray López, Goretti
dc.contributor.authorBruneel, David
dc.contributor.authorBoto Sánchez, Fernando
dc.contributor.authorZabala, Alaitz
dc.date.accessioned2024-11-12T15:39:56Z
dc.date.available2024-11-12T15:39:56Z
dc.date.issued2024-12
dc.identifier.citationTribology International 200 : (2024) // Article ID 110067es_ES
dc.identifier.issn0301-679X
dc.identifier.urihttp://hdl.handle.net/10810/70425
dc.description.abstractFemtosecond laser surface texturing is gaining increased interest for optimizing tribological behaviour. However, the laser surface texturing parameter selection is often conducted through time-consuming and inefficient trial-and-error processes. Although machine learning emerges as an interesting option, multitude of models exists, and determining the most suitable one for predicting femtosecond laser textures remains uncertain. Furthermore, the absence of open-source implementations and the expertise required for their utilization hinders their adoption within the tribology community. In this study, two novel inverse modelling approaches for the optimal prediction of femtosecond laser parameters are proposed, based on the results of a comparison between six different machine learning models conducted within this research. The entire development relies on open-source tools, and the models employed are shared, with the aim of democratizing these techniques and facilitating their adoption by non-expert users within the tribology community.es_ES
dc.description.sponsorshipEusko Jaurlaritza, “Programa de apoyo a la investigación colaborativa en áreas estratégicas” (Proyecto BISUM: Ref. KK-2021/00089)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectfemtosecond laseres_ES
dc.subjectinverse modellinges_ES
dc.subjectmachine learninges_ES
dc.subjectstampinges_ES
dc.subjectsurface texturinges_ES
dc.titleOn the use of machine learning for predicting femtosecond laser grooves in tribological applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC licensees_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0301679X24008193es_ES
dc.identifier.doi10.1016/j.triboint.2024.110067
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
Except where otherwise noted, this item's license is described as © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license