dc.contributor.author | Reguero Acebal, Leire | |
dc.contributor.author | Puente Bustinza, Nagore | |
dc.contributor.author | Elezgarai Gabantxo, Izaskun | |
dc.contributor.author | Mendizabal Zubiaga, Juan Luis | |
dc.contributor.author | Canduela Pérez, Miren Josune | |
dc.contributor.author | Buceta Salazar, Ianire | |
dc.contributor.author | Ramos Uriarte, Almudena | |
dc.contributor.author | Suárez, Juan | |
dc.contributor.author | Rodríguez de Fonseca, Fernando | |
dc.contributor.author | Marsicano, Giovanni | |
dc.contributor.author | Grandes Moreno, Pedro Rolando | |
dc.date.accessioned | 2014-01-23T17:28:47Z | |
dc.date.available | 2014-01-23T17:28:47Z | |
dc.date.issued | 2011-10 | |
dc.identifier.citation | PLoS ONE 6(10) : (2011) // e26167 | es |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10810/11263 | |
dc.description.abstract | Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus.
Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals.
Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior. | es |
dc.description.sponsorship | L. Reguero is in receipt of a Predoctoral Fellowship from the Basque Country Government (BFI 07.286); I. Buceta is in receipt of a Predoctoral Fellowship from the Basque Country University. Dr. Pedro Grandes' laboratory is supported by The Basque Country Government grant GIC07/70-IT-432-07, by Ministerio de Ciencia e Innovacion (SAF2009-07065) and by Red de Trastornos Adictivos, RETICS, Instituto de Salud Carlos III, MICINN, grant RD07/0001/2001. Dr. Giovanni Marsicano's laboratory is supported by AVENIR/INSERM (with the Fondation Bettencourt-Schueller), by ANR (ANR-06-NEURO-043-01), by European Foundation for the Study of Diabetes (EFSD), by the EU-FP7 (REPROBESITY, contract number HEALTH-F2-2008-223713) and European Commission Coordination Action ENINET (contract number LSHM-CT-2005-19063). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es |
dc.language.iso | eng | es |
dc.publisher | Public Library of Science | es |
dc.relation | info:eu-repo/grantAgreement/EC/FP7/223713 | es |
dc.relation | info:eu-repo/grantAgreement/MICINN/SAF2009-07065 | |
dc.relation | info:eu-repo/grantAgreement/MICINN/RD07/0001/2001 | |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.subject | in situ hybridization | es |
dc.subject | endocannabinoid system | es |
dc.subject | energy balance | es |
dc.subject | food intake | es |
dc.subject | rat brain | es |
dc.subject | body weight | es |
dc.subject | neuros | es |
dc.subject | expression | es |
dc.subject | hippocampus | es |
dc.subject | forebrain | es |
dc.title | GABAergic and Cortical and Subcortical Glutamatergic Axon Terminals Contain CB1 Cannabinoid Receptors in the Ventromedial Nucleus of the Hypothalamus | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2011 Reguero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | es |
dc.relation.publisherversion | http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0026167 | es |
dc.identifier.doi | 10.1371/journal.pone.0026167 | |
dc.departamentoes | Neurociencias | es_ES |
dc.departamentoeu | Neurozientziak | es_ES |
dc.subject.categoria | AGRICULTURAL AND BIOLOGICAL SCIENCES | |
dc.subject.categoria | MEDICINE | |
dc.subject.categoria | BIOCHEMISTRY AND MOLECULAR BIOLOGY | |