Valuing Expansions of the Electricity Transmission Network under Uncertainty: The Binodal Case
Energies 4(10) : 1696-1727 (2011)
Abstract
Transmission investments are currently needed to meet an increasing electricity demand, to address security of supply concerns, and to reach carbon-emissions targets. A key issue when assessing the benefits from an expanded grid concerns the valuation of the uncertain cash flows that result from the expansion. We propose a valuation model that accommodates both physical and economic uncertainties following the Real Options approach. It combines optimization techniques with Monte Carlo simulation. We illustrate the use of our model in a simplified, two-node grid and assess the decision whether to invest or not in a particular upgrade. The generation mix includes coal-and natural gas-fired stations that operate under carbon constraints. The underlying parameters are estimated from observed market data.