Show simple item record

dc.contributor.authorSusperregi Zabalo, Loreto
dc.contributor.authorSierra Araujo, Basilio ORCID
dc.contributor.authorCastrillón, Modesto
dc.contributor.authorLorenzo, Javier
dc.contributor.authorMartínez Otzeta, José María
dc.contributor.authorLazkano Ortega, Elena
dc.date.accessioned2019-02-25T19:51:58Z
dc.date.available2019-02-25T19:51:58Z
dc.date.issued2013-10-29
dc.identifier.citationSensors 3(11) : 14687-14713 (2013)es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10810/31687
dc.description.abstractDetecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform. The set of sensors is set up combining the rich data source offered by a Kinect sensor, which provides vision and depth at low cost, and a thermopile array sensor. Experimental results carried out with a mobile platform in a manufacturing shop floor and in a science museum have shown that the false positive rate achieved using any single cue is drastically reduced. The performance of our algorithm improves other well-known approaches, such as C-4 and histogram of oriented gradients (HOG).es_ES
dc.description.sponsorshipThis work was supported by Kutxa Obra Social in the project, KtBot. Work partially funded by the Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI) and the Computer Science Department at ULPGC. The Basque Government Research Team grant and the University of the Basque Country UPV/EHU, under grant UFI11/45 (BAILab) are acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectsensor fusiones_ES
dc.subjectpeople detectiones_ES
dc.subjectcomputer visiones_ES
dc.subjecthierarchical classificationes_ES
dc.subjectmobile robot/platformes_ES
dc.subjectclassifieres_ES
dc.subjectalgorithmses_ES
dc.subjecttrackinges_ES
dc.subjectvisiones_ES
dc.titleOn the Use of a Low-Cost Thermal Sensor to Improve Kinect People Detection in a Mobile Robotes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/13/11/14687es_ES
dc.identifier.doi10.3390/s131114687
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record