dc.contributor.author | Fernández Bertolin, Aingeru | |
dc.date.accessioned | 2020-09-17T16:43:40Z | |
dc.date.available | 2020-09-17T16:43:40Z | |
dc.date.issued | 2019-07-01 | |
dc.identifier.citation | Journal of Evolution Equations 20 : 257–278(2020) // https://doi.org/10.1007/s00028-019-00524-6 | es_ES |
dc.identifier.issn | 1424-3199 | |
dc.identifier.issn | 1424-3202 | |
dc.identifier.uri | http://hdl.handle.net/10810/46121 | |
dc.description.abstract | In this paper, we give log-convexity properties for solutions to discrete Schrödinger equations with different discrete versions of Gaussian decay at two different times. For free evolutions, we use complex analysis arguments to derive these properties, while in a perturbative setting we use a preliminar log-convexity statement in order to conclude our result. | es_ES |
dc.description.sponsorship | The author was supported by the projects PGC2018-094528-B-I00 funded by (AEI/FEDER, UE) and acronym “IHAIP,” ERCEA Advanced Grant 669689-HADE, and the Basque Government IT641-13 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/669689 | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/PGC2018-094528-B-I0 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | discrete Schrödinger equation | es_ES |
dc.subject | log convexity | es_ES |
dc.subject | decay properties | es_ES |
dc.subject | modified Bessel functions | es_ES |
dc.title | Convexity properties of discrete Schrödinger evolutions | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2019 Springer Nature Switzerland AG | es_ES |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00028-019-00524-6 | es_ES |
dc.identifier.doi | 10.1007/s00028-019-00524-6 | |
dc.contributor.funder | European Commission | |
dc.departamentoes | Matemáticas | es_ES |
dc.departamentoeu | Matematika | es_ES |