UPV-EHU ADDI
  • Back
    • English
    • Español
    • Euskera
  • Login
  • English 
    • English
    • Español
    • Euskera
  • FAQ
View Item 
  •   Home
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
  •   Home
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elastic and Thermoreversible Iongels by Supramolecular PVA/Phenol Interactions

Thumbnail
View/Open
Preprint (7.722Mb)
Date
2020-06-28
Author
Luque, Gisela C.
Picchio, Matías L.
Martins, Ana P.S.
Dominguez-Alfaro, Antonio
Tomé, Liliana C.
Mecerreyes Molero, David
Minari, Roque Javier
Metadata
Show full item record
Macromolelcular Bioscience 2020, 2000119
URI
http://hdl.handle.net/10810/46341
Abstract
Iongels have attracted much attention over the years as ion-conducting soft materials for applications in several technologies including stimuli-responsive drug release and flexible (bio)electronics. Nowadays, iongels with additional functionalities such as electronic conductivity, self-healing, thermo-responsiveness or biocompatibility are actively being searched for high demanding applications. In this work, we present a simple and rapid synthetic pathway to prepare hyperelastic and thermoreversible iongels. These iongels were prepared by supramolecular crosslinking between polyphenols biomolecules with a hydroxyl-rich biocompatible polymer such as poly(vinyl alcohol) (PVA) in the presence of ionic liquids. Using this strategy, a variety of iongels were obtained by combining different plant-derived polyphenol compounds such as gallic acid, pyrogallol, and tannic acid with imidazolium-based ionic liquids, namely [C2mim][N(CN)2] and [C2mim][Br]. A suite of characterization tools was used to study the structural, morphological, mechanical, rheological and thermal properties of the supramolecular iongels. These iongels can withstand large deformations (40 % under compression) with full recovery, revealing reversible transitions from solid to liquid state between 87 to 125 °C. Finally, the polyphenol-based thermoreversible iongels shows appropriated properties for their potential application as printable electrolytes for bioelectronics.
Collections
  • OpenAire
  • Artículos

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE