Show simple item record

dc.contributor.authorYu, Tao
dc.contributor.authorKennes, Dante M.
dc.contributor.authorRubio Secades, Angel
dc.contributor.authorSentef, Michael A.
dc.date.accessioned2021-11-02T11:31:18Z
dc.date.available2021-11-02T11:31:18Z
dc.date.issued2021-09-13
dc.identifier.citationPhysical Review Letters 127(12) : (2021) // Article ID 127001es_ES
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/10810/53692
dc.description.abstractRecent measurements of the resistivity in magic-angle twisted bilayer graphene near the superconducting transition temperature show twofold anisotropy, or nematicity, when changing the direction of an in-plane magnetic field [Cao et al., Science 372, 264 (2021)]. This was interpreted as strong evidence for exotic nematic superconductivity instead of the widely proposed chiral superconductivity. Counter-intuitively, we demonstrate that in two-dimensional chiral superconductors the in-plane magnetic field can hybridize the two chiral superconducting order parameters to induce a phase that shows nematicity in the transport response. Its paraconductivity is modulated as cos(2 theta(B)), with theta(B) being the direction of the in-plane magnetic field, consistent with experiment in twisted bilayer graphene. We therefore suggest that the nematic response reported by Cao et al. does not rule out a chiral superconducting ground state.es_ES
dc.description.sponsorshipWe thank Rafael Fernandes and Liang Fu for useful discussions. T. Y. and M. A. S. acknowledge financial support by Deutsche Forschungsgemeinschaft through the Emmy Noether program (SE 2558/2). D. M. K. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via RTG 1995, within the Priority Program SPP 2244 "2DMP" and Germany's Excellence StrategyCluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1-390534769. A. R. acknowledges support from the European Research Council (ERC-2015-AdG-694097), UPV/EHU Grupos Consolidados (IT1249-19) and the Cluster of Excellence "CUI: Advanced Imaging of Matter" of the Deutsche Forschungsgemeinschaft (DFG)-EXC 2056-project ID 390715994. The Flatiron Institute is a division of the Simons Foundation. We acknowledge support from the Max Planck-New York City Center for Non-Equilibrium Quantum Phenomena.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/694097es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectsymmetryes_ES
dc.subjectfluctuationses_ES
dc.titleNematicity Arising from a Chiral Superconducting Ground State in Magic-Angle Twisted Bilayer Graphene under In-Plane Magnetic Fieldses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.127001es_ES
dc.identifier.doi10.1103/PhysRevLett.127.127001
dc.contributor.funderEuropean Commission
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Attribution 4.0 International (CC BY 4.0)