Show simple item record

dc.contributor.authorLiu, Guoming
dc.contributor.authorMüller Sánchez, Alejandro Jesús ORCID
dc.contributor.authorWang, Dujin
dc.date.accessioned2022-08-29T10:53:57Z
dc.date.available2022-08-29T10:53:57Z
dc.date.issued2021-08-03
dc.identifier.citationccounts of Chemical Research 54(15) : 3028–3038 (2021)es_ES
dc.identifier.issn0001-4842
dc.identifier.issn1520-4898
dc.identifier.urihttp://hdl.handle.net/10810/57317
dc.descriptionUnformatted post-print version of the accepted articlees_ES
dc.description.abstractCrystallization of polymeric materials under nanoscopic confinement is highly relevant for nanotechnology applications. When a polymer is confined within rigid nanoporous anodic aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning procedures after infiltrations of polymers in AAO pores must be performed to ensure producing an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO surface percolate nanopores and lead to the so-called “fractionated crystallization”, i.e., multiple crystallization peaks during cooling. As the density of isolated nanopores in a typical AAO template exceeds the density of heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This means that the nucleation will proceed by surface or homogeneous nucleation. As a consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to exponentially increase nucleation density. However, when the diameter of the nanopores is lower than a critical value, confinement prevents the possibility to self-nucleate the material. Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of polymer crystals changes from the “chain perpendicular to” to “chain parallel to” AAO pore axis, when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is determined by kinetics including crystal growth, nucleation and crystal growth rate. An orientation diagram has been established for PEO/AAO system, considering the cooling condition and pore size. The interfacial polymer layer has different physical properties as compared to the bulk. In poly(L-lactic acid), the relationship between the segmental mobility of the interfacial layer and crystallization rate is established. For the investigation of polymorphic transition of poly(butane-1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. Block and random copolymers have also been infiltrated into AAO nanopores, and their crystallization behavior is analogously affected as pore size is reduced.es_ES
dc.description.sponsorshipThis work was supported by the National Key R&D Program of China (Grant No. 2017YFE0117800) and the National Natural Science Foundation of China (Grant Nos. 21873109, 51820105005, and 21922308). We also acknowledge the financial support from the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 778092. A.J.M. acknowledges funding from MINECO, Grant No. MAT2017-83014-C2-1-P, and from the Basque Government through Grant No. IT1309-19. G.L. is grateful to the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y201908).es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/778092es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2017-83014-C2-1-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectcopolymerses_ES
dc.subjectcrystallizationes_ES
dc.subjectcrystalses_ES
dc.subjectnucleationes_ES
dc.subjectpolymerses_ES
dc.titleConfined Crystallization of Polymers within Nanoporeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderCopyright © 2021 American Chemical Societyes_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.accounts.1c00242es_ES
dc.identifier.doi10.1021/acs.accounts.1c00242
dc.contributor.funderEuropean Commission
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record