Show simple item record

dc.contributor.authorHegade, Narendra N.
dc.contributor.authorChen, Xi
dc.contributor.authorSolano Villanueva, Enrique Leónidas ORCID
dc.date.accessioned2023-01-18T18:16:52Z
dc.date.available2023-01-18T18:16:52Z
dc.date.issued2022-11
dc.identifier.citationPhysical Review Research 4 : (2022) // Article ID L042030es_ES
dc.identifier.issn2643-1564
dc.identifier.urihttp://hdl.handle.net/10810/59357
dc.description.abstractWe propose digitized-counterdiabatic quantum optimization (DCQO) to achieve polynomial enhancement over adiabatic quantum optimization for the general Ising spin-glass model, which includes the whole class of combinatorial optimization problems. This is accomplished via the digitization of adiabatic quantum algorithms that are catalyzed by the addition of nonstoquastic counterdiabatic terms. The latter is suitably chosen not only for escaping classical simulability, but also for speeding up the performance. Finding the ground state of a general Ising spin-glass Hamiltonian is used to illustrate that the inclusion of k-local nonstoquastic counterdiabatic terms can always outperform the traditional adiabatic quantum optimization with stoquastic Hamiltonians. In particular, we show that a polynomial enhancement in the ground-state success probability can be achieved for a finite-time evolution, even with the simplest two-local counterdiabatic terms. Furthermore, the considered digitization process within the gate-based quantum computing paradigm, provides the flexibility to introduce arbitrary nonstoquastic interactions. As an experimental test, we study the performance of the DCQO algorithm on cloud-based IBM's superconducting and Quantinuum's ion-trap quantum processors with up to 8 qubits. Along these lines, using our proposed paradigm on current noisy intermediate-scale quantum (NISQ) computers, quantum speedup may be reached to find approximate solutions for NP-complete and NP-hard optimization problems. We expect DCQO to become a fast-lane paradigm toward quantum advantage in the NISQ era.es_ES
dc.description.sponsorshipThis work is partially supported from NSFC (12075145), STCSM (Grant No. 2019SHZDZX01-334 ZX04), EU FET Open Grant Quromorphic (828826) and EPIQUS (899368), QUANTEK Project No. (KK-2021/00070), the Basque Government through Grant No. IT1470-22 and Ministerio de Ciencia e Innovacion (PID2021-126273NB-I00). X.C. acknowledges the Ramon y Cajal program (RYC-2017-22482).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RYC-2017-22482es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-126273NB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/828826es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/899368es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcomputationes_ES
dc.titleDigitized counterdiabatic quantum optimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.L042030es_ES
dc.identifier.doi10.1103/PhysRevResearch.4.L042030
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Except where otherwise noted, this item's license is described as Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.