Show simple item record

dc.contributor.authorArrieta Torres, Igor
dc.contributor.authorAvilez, Ana Belén
dc.date.accessioned2023-06-29T17:06:40Z
dc.date.available2023-06-29T17:06:40Z
dc.date.issued2023-07
dc.identifier.citationJournal of Pure and Applied Algebra 227(7) : (2023) // Article ID 107320es_ES
dc.identifier.issn0022-4049
dc.identifier.issn1873-1376
dc.identifier.urihttp://hdl.handle.net/10810/61808
dc.description.abstractA general insertion theorem due to Preiss and Vilimovský is extended to the category of locales. More precisely, given a preuniform structure on a locale we provide necessary and sufficient conditions for a pair f ≥ g of localic real functions to admit a uniformly continuous real function in-between. As corollaries, separation and extension results for uniform locales are proved. The proof of the main theorem relies heavily on (pre-)diameters in locales as a substitute for classical pseudometrics. On the way, several general properties concerning these (pre-)diameters are also shown.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectlocalees_ES
dc.subjectframees_ES
dc.subjectcoveres_ES
dc.subjectinsertion theoremes_ES
dc.subjectextension theoremes_ES
dc.subjectseparation theoremes_ES
dc.titleA general insertion theorem for uniform localeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022404923000038es_ES
dc.identifier.doi10.1016/j.jpaa.2023.107320
dc.departamentoesMatemáticases_ES
dc.departamentoeuMatematikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).